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Tails of the crossing probability
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The scaling of the tails of the probability of a system to percolate only in the horizontal direction ), was
investigated numerically for the correlated site-bond percolation model (g-state Potts model) for g=1, 2, 3, 4
(where g is the number of spin states). We have to demonstrate that the crossing probability 7, (p) far from the
critical point p. has the shape m,,(p) =D explcL(p—p.)"] where v is the correlation length index, and p=1
—exp(—p) is the probability of a bond to be closed. For the tail region the correlation length is smaller than the
lattice size. At criticality the correlation length reaches the sample size and we observe crossover to another
scaling m,(p) =A exp{-b[L(p—p.)"]'}. Here x is a scaling index describing the central part of the crossing

probability.
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I. INTRODUCTION

The scaling theory states that in the vicinity of the critical
point for a system of linear size L the temperature critical
behavior of thermodynamical quantities can be expressed as
a function of a single variable L'"(T-T,)/T, where T, is the
critical temperature and v is the correlation length index [1].
The g-state Potts model can be represented as the correlated
site-bond percolation in terms of Fortuin-Kasteleyn (FK)
clusters [2]. At the critical point of the second order phase
transition, an infinite cluster is formed. This cluster crosses
the system connecting the opposite sides of the square lat-
tice. There is a close relationship between percolation prop-
erties of FK clusters and critical properties of the Potts
model. In the last decade the study of the shape of the cross-
ing probability was performed by conformal methods [3-8]
as well as numerically [9-18]. The continuum limit of the
probability of a system to percolate in the horizontal direc-
tion 77,(p,.) at the critical point p,. was investigated by Cardy
by conformal field methods [3,4,8]. The analogous formula
for the probability of a system to percolate in both directions
Ty, = T, — T, Was found by Watts [5]. The works of Smirnov
[6,7] analytically proved that the crossing formula holds for
the continuum limit of site percolation on the triangle lattice
[6,7]. The conformal field method allows us to investigate
crossing probabilities at the critical point for samples with
different aspect ratio. The behavior of the crossing probabil-
ity as a function of deviation from the critical point was
investigated by numerical methods. Langlands et al. [9,10]
show, that for site and bond percolation on square, honey-
comb, and triangle lattices with the aspect ratios a, a3, and
a\3/ 2, respectively, the crossing probability 7, is the uni-
versal function of a. Hu, Lin, and Chen demonstrate that by
choosing a very small number of nonuniversal metric factors,
all scaled data for percolation functions and numbers of per-
colating clusters on square, honeycomb, and triangle lattices
may fall on the same universal scaling functions [12-15].
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They use the scaling variable (p—p, L"), where p, is the
percolation critical point.

According to Refs. [19,20] the distribution function of the
percolation thresholds is a Gaussian function. Following the
number of works [11,17,18,21,22] the tails of the distribution
function are not Gaussian and are described by a stretched
exponent exp[C(p-p.)”]. The authors of the recent work
Ref. [23] are still uncertain about distinguishing a stretched
exponential behavior from a Gaussian because no definitive
conclusion can be extracted from their data.

The aim of this paper is to investigate the shape of the
probability of a system to percolate only in the horizontal
direction ;. We perform a numerical simulation of the cor-
related site-bond percolation model for g=1, 2, 3, 4 (the
percolation model g=1, the Ising model ¢g=2, and the Potts
model g=3, 4) for lattice sizes L=32, 48, 64, 80, 128. The
scaling formula for the body of the crossing probability at
criticality |7]< 7, and for tails of the crossing probability
| 71> 7, was obtained:

Aexp(-br), |1 =1,
Wh.v(T) =

D exp(-c7), W

|7 > 7,

where 7=L(p—p.)" is the scaling variable. The tails of the
crossing probability on a finite lattice correspond to the criti-
cal region. In this critical region |7/>7, the correlation
length ¢ is smaller than the sample size §<L. As the tem-
perature approaches the critical point 7, the correlation
length reaches the sample size. In the region |7/ < 7, where
the correlation length is greater than the sample size {>L,
the function 7, crosses over to the smoothed “body” part.
This part is characterized by the index x. Two different scal-
ing regions of the crossing probability indicate the uncer-
tainty about the shape of this function.

The paper is organized as follows. In the second section,
we describe details of the numerical simulation. In the third
section, the method for determining the pseudocritical point
p.(L,q) on the finite lattice is described. We use p.(L,q) to
perform the approximation of the tails. In Sec. IV we ap-
proximate the double logarithm of the crossing probability
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FIG. 1. The dual lattice with the horizontally spanning

cluster.

In{~In[7,(p;L,q)]} tails as a function of the logarithm of
deviation from the critical point In[p—p.(L,q)] by the linear
function ¢(L,q)+y(L,q)In[p-p.(L,q)] with slope y [¢(L,q)
is a fitting parameter]. We obtain y(L,q)=v(g) for this ap-
proximation procedure. In Sec. V we describe a fitting pro-
cedure using the scaling variable 7=L(p—p,)”. The results of
the approximation are discussed in Sec. VI.

II. DETAILS OF NUMERICAL SIMULATION

We perform a massive Monte Carlo simulation on a
square lattice of size L to obtain high-precision data for .
We use the dual lattice shown in Fig. 1. On this lattice the
critical point of the bond percolation (g=1) is exactly equal
to 1/2 and is not dependent on the lattice size [24]. To pro-
duce the pseudorandom numbers we use the R9689 random
number generator with four taps [25]. We close each bond
with a probability p and leave it open with a probability 1
—p. Then we split the lattice into clusters of connected sites
by using the Hoshen-Kopelman algorithm [26]. After that we
check the percolation through this configuration. We average
the crossing probability over 107 random bond configura-
tions.

We use the Wolff [27] cluster algorithm to generate a
sequence of thermally equilibrated spin configurations for
the Potts g=2, 3,4 model. For each particular inverse tem-
perature B=1/T we flip 20 000 Wolff clusters to equilibrate
the system.

The deviation of the pseudocritical point on the finite lat-
tice from the position of the critical point on the infinite
lattice for the spin model is smaller for periodic boundary
conditions (PBCs) rather than the open boundary conditions
(OBCs) [28,29]. For this reason we use the PBCs for the
Wolff algorithm. The Monte Carlo algorithm generates spin
configurations on a torus. For a generated spin configuration
we create a configuration of bonds. Each bond between sites
with equal spin variable o is closed with the probability p
=1-exp(-pB) and is open with probability 1-p=exp(-p3).
Bonds between sites with different values of o are always
open in accordance with the Fortuin-Kasteleyn rule [2]. Then
we split the particular spin and bond configurations into dif-
ferent clusters. Here we use OBCs. It means that for each
generated configuration we cut the torus and check the cross-
ing on the square with open boundary conditions. We fix the
OBC:s for crossing only in horizontal direction 7, because it
implies the vertical crossing is absent and the top and bottom
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rows must be disjointed. But we take into consideration the
additional row and column of bonds, as shown in Fig. 1. In
Fig. 1 contact points are shown by arrows. The left contact
points are attached to the left column of sites. The right
contact points are attached to additional bonds. In Fig. 1 the
bond configuration with the horizontally spanning cluster is
shown.

We check the percolation through an obtained cluster con-
figuration, generate a new spin configuration, and so on. We
average the crossing probability over 107 configurations for
each value of the inverse temperature 3. So the resolution of
our computations is about 1077, In this way we perform a
numerical simulation and get a set of data for ,,(p;L,q) for
the lattice sizes L=32, 48, 64, 80, 128 and ¢g=2, 3, 4. The
formal definition of m,,(p;L,q) as a sum over different clus-
ter configurations is described in [30].

For the Potts model we use the dual lattice as we do for
the percolation. It means that we take into account additional
bonds attached to the bottom row of spins. In the same way
we take into account additional bonds attached to the right
column of the spins. On the lattice with PBCs these bonds
have to connect the right and the left columns. We cut the
torus (because we use OBCs for the crossing probability) but
we keep these additional bonds and take into account the
checking of the crossing. Then we check the percolation
through the obtained cluster configuration. After that we flip
three Wolff clusters, check the spanning for a new spin con-
figuration, and so on.

III. DETERMINATION OF THE PSEUDOCRITICAL
POINT ON THE FINITE LATTICE

We investigate the crossing probability as a function of
deviation from the critical point. Therefore, we perform pre-
liminary approximations to obtain the critical points for the
finite samples; namely, we obtain the pseudocritical point
and the shape of the central part of the crossing probability,
determine the shape of the tails of the crossing probability,
combine together the information for body and tails, and
reconstruct the total shape of the crossing probability.

We need to recall that we consider the crossing probabil-
ity as a function of the variable p=1-exp(-8) (probability
of a bond to be closed). It is easy to understand that we must
take the pseudocritical point on the finite lattice p.(L,q) as
the reference point. The crossing probability is a symmetric
function of the variable Ap=[p-p.(L,q)]. This fact implies
that the high-temperature tail p,—Ap (Ap>0) and the low-
temperature tail p.+Ap coincide ), (p.—Ap)=m,,(p.+Ap).
For the bond percolation on the dual lattice the position of
the percolation point does not depend on the lattice size
p(L,q=1)=0.5[24].

To determine the Ising and the Potts model critical point
pL,q) we use the following procedure. We can assume [30]
that in the region —6 <In[m,,(p;L,q)] the following fitting
formula is true:

F(p;L,q) = A(g.Lexp(~{B(L.q)[p = p(L, @) [}*"*).
(2)

Here A(L,q) defines the crossing probability in the critical
point, B(L,q) is a scaling variable, p.(L,q) is the position of
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the pseudocritical point on the lattice L, and {(L,q) is a
scaling index. Therefore we fit the logarithm of the crossing
probability  In(m,,) by the function f(p;L,q)
=In[F(p;L,q)], namely,

f1(p:L,q) = a(L,q) —{B(L.q)[p - pL,q)[}*"“9,  (3)

where a(L,q)=In[A(L,q)].

We plot the data for In[7,(p;L,q)] as a function of p in
Figs. 2(a)-2(d) for g=1, 2, 3, and 4, respectively. The error
bars in these figures are about the symbol size. It seems that
the behavior of In[m,,(p;L,q)] near p,. is parabolic. The re-
sults of the approximation are plotted in the same figures by
lines. We shall see that there is a good agreement between
the numerical data and the results of the approximation. But
we see deviation at the point p, especially for g=3, 4. In the
vicinity of p,. real graphs are smoother than fitting functions.
Finally for each pair of numbers (L,q) we obtain four fitting
parameters A(L,q), B(L,q), p.(L,q), and {(L,q).

The fitting parameter a(L,q)=In[A(L,q)] defines a verti-
cal shift of graphs from the zero level in Figs. 2(a)-2(d). We
approximate the data for B(L,q) by the function
b*(L,q) L"),

In Fig. 3(a) the results of the approximation are plotted by
lines. The values of the fitting parameters b°(L,q) and
u(L,b) as well as the inverse correlation length index 1/ v are
placed in Table 1. We can see for g=1, 2, 3 that u(L,q)
=1/v(q). It can be assumed that

B(L,q) =b"(L,q)L""?, (4)

In the case ¢g=4 the scaling index u(g) is not equal 1/v(g
=4). Many critical quantities in the Potts model g=4 exhibit
logarithmic corrections [31-34]. These logarithmic correc-
tions explain the difference between the analytical value
1/v(g=4)=1.5 and the numerical approximation for the scal-
ing index u=1.372(8).

The critical point in the p scale for the g-state Potts model
on the infinite lattice is pP™**=\g/(1+q) (see Ref. [35]).
The numerical results for the position of the critical point for
the finite lattices as a function of the lattice size L are shown
in Fig. 3(b). On the dual lattice the position of the critical
point for percolation is equal to % and does not depend on the
lattice size. For our computation for all points p.(L,q) the
deviations from 0.5 are less than 0.0001. This deviation cor-
responds to the numerical inaccuracy of our Monte Carlo
simulation.

The data p.(L,q) for g=2, 3, 4 were approximated by a
power function of the lattice size p.(L,q)=p.(q)
+dp(g)L"'9). The results of the approximation are placed in
Table II and are also plotted by lines in Fig. 3(b). We shall
see that our fitting procedure determines the critical point
with accuracy up to four digits after the decimal point. Thus,
we shall use the obtained values p.(L,q) for the following
approximation of the tails of the crossing probability. In
Table IIT we place the results of the approximation for the
index {(L,q) describing the curvature of the central part of
the crossing probability.
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FIG. 2. Approximation of the logarithm of the crossing prob-
ability In(7,,) as a function of p by the function fi(p;L,q)
=a(L.q)—{B(L.q)[p—pL.q)]}*“?, for (a) percolation g=1; (b)
Ising model g=2; (c) Potts model ¢g=3; (d) Potts model g=4.

IV. THE SHAPE OF THE CROSSING PROBABILITY 7,
TAILS: DIRECT APPROACH

Let us check the shape of the crossing probability tails.
The double logarithm of the crossing probability
In{-In[ 7, (L,q)]} are plotted as functions of the variable ¢
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FIG. 3. (a) The fitting parameter B(L,q) as a function of L.
Results of the approximation by functions b*(L,q)L""%) (see Table
1) are plotted by lines. (b) Position of the pseudocritical point on the
finite lattice p.(L,q) as a function of the lattice size L for g=1, 2, 3,
4 and approximation by the power law p.(L,q)=p.(>,q)
+dp(q)L' for g=2, 3, 4. Line 0.5 is also added.

=In[|p-p.(L,q)|] in Figs. 4(a)-4(d) for ¢g=1, 2, 3, and 4,
respectively.

The points for high-temperature and low-temperature tails
lie on the same lines. This again validates our fitting proce-
dure.

We expect that the crossing probability tails are described
by the formula

ms(piL.q) = D(L,q)exp{— C(L,q)[p — p(L.q) ">},
&)

Here D(L,q) is the prefactor, p.(L,q) is the position of the
pseudocritical point, and the variables C(L,q) and y(L,q)
define the shape of tails. In the interval In(6)
<In{-In[7,(L,q)]} <In(12) the tails of the crossing prob-
ability look like straight lines.

The absence of a prefactor before the exponent in Eq. (5)
was argued in Ref. [18] for the case of wrapping in the
horizontal direction in terms of the transfer matrix. We can-

TABLE 1. Data for fitting parameters b"(L,q), u(L,q).

L g=1 qg=2 q=3 qg=4
b(L,q) 1.84(2) 1.767(9) 1.63(2) 1.49(5)
u(L,q) 0.746(3) 1.002(1) 1.198(4) 1.372(8)
1/u(q) 0.75 1 1.2 1.5
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TABLE II. Results of approximation of p.(L,q) by the power
law p.(q)+dp(q)L’9. The analytical values pP***(¢)=vq/(\gq
+1) are added for comparison.

q dp(q) v(q) pq) pPe(q)

2 —0160(5) -125(1)  0.58573(2)  0.585786...
3 -022(2) -133(2)  0.63394(2)  0.633975...
4 —026(2)  —142(4)  0.66666(1)  0.6666666...

not directly apply the same arguments in our case, because
we consider another function—the probability of crossing
only in the horizontal direction. The presence of a prefactor
must cause the deviation from linear dependence in Fig. 4 in
accordance with Eq. (6):

In[— In(mmy,)] = In{- d(L.q) + C(L.q)exp[ty(L.q)]}

d(L,q)
C(L.q)explry(L.q)]’
(6)

Here d(L,q)=In[D(L,q)] and t=In[|p-p.(L,q)|] the loga-
rithms of deviation from the critical point. But deviation due
to the prefactor D(L,q)# 1 exponentially decreases as f
grows so it is possible to avoid the deviation from the linear
dependence by appropriate choice of an interval of approxi-
mation. In the region of approximation points in Fig. 4 lie on
the lines with good accuracy. We obtain the set of p.(L,q)
for L=32, ..., 128 and g¢=2, 3, 4 in Sec. III. Using these data
let us approximate the double logarithm of the tails
In[—In(7,,)] as a function of ¢ by the formula (7)

=In[C(L,q)]+ y(L.q)t -

fot;L,q) =¢(L,q) + y(L,q)t. (7)

Combining Egs. (5) and (7), we obtain ¢(L,q)=In[C(L,q)].
The resolution of our computations 1077 is about 16 units on
the (=In) scale and is about 2.7 units on the [In(-In)] scale.
We use the points in the interval In(6)<In[-In(7,,)]
<In(12), In(6)=1.79,In(12) =2.48, for this approximation.
This interval is indicated in Figs. 4(a)-4(d) by horizontal
lines. In this figures the slope lines represent results of ap-
proximation for y(L,q).

In the region In[—In(7r,,]) <In(6) the crossing probability
obeys another scaling formula. In the region In[-In(m,)]
>1n(12) the numerical inaccuracy becomes large. There are
only a few numbers of “hits” in horizontally spanning clus-

TABLE III. Results of the approximation for {(L,q).

L q=1 q=2 q=3 qg=4

32 1.887(6) 1.52(2) 1.38(3) 1.28(3)
48 1.883(7) 1.52(2) 1.37(3) 1.27(3)
64 1.882(6) 1.52(2) 1.38(3) 1.28(3)
80 1.885(7) 1.52(2) 1.38(3) 1.30(3)
128 1.86(1) 1.52(2) 1.37(3) 1.28(3)
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FIG. 4. Approximation of the double logarithm of the crossing
probabilities In{-In[7,(p;L,q)]} by the function f,(t;L,q)
=c(L,q)+y(L,q)t of the logarithm of the distance to the critical
point t=In[|p-p.(L,q)|] for (a) percolation g=1; (b) Ising model
q=2; (c) Potts model ¢g=3; (d) Potts model g=4. The range of the
approximation region is shown by horizontal lines.

ters for In[—In(7r,,)]>1In(12). Results of the numerical ap-
proximation for y(L,q) are presented in Table IV.

As we can see y(L,q)=wv(q). The exception is the case
q=4. For g=4 we obtain y(L,q=4)=3/4 instead of v(g
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=4)=2/3. This deviation can be explained by the logarith-
mic corrections. Some deviations exceeding the approxima-
tion errors can be explained by the choice of the approxima-
tion region. As can be seen from Figs. 4(a)—4(d) decreasing
of the bottom approximation range In(6) causes decreasing
of the slope of the approximation line. From all said above
we can conclude that the tails of the crossing probability
behave like exp[-(p—-p.)"].

We fit the parameter &(L,q) by the expression c,
+c,In(L). In Fig. 5 the fitting parameter &(L,q) is plotted as
a function of L for g=1, 2, 3, 4 as well as the results of the
approximation c¢;+c, In(L).

The parameter c; for all g is equal to 1 within accuracy of
the approximation. In accordance with scaling theory for the
system of size L the deviation from the critical point is de-
scribed by the expression L(p—p,.)”. Therefore we may as-
sume that

Ths(p3L.q) = D(L,q)exp{- c(¢)L[p — p.(L.q)]"?}. (8)

V. MODIFIED FITTING PROCEDURE

From the above we can make the following conclusions.
There are two scaling regions: the first one is in the vicinity
of the critical point, and the second is in the tails. Analyzing
Egs. (2), (4), and (8) we can conclude that the distance from
the critical point [p—p.(L,q)] and the lattice size L occur in
a formula only as the combination L/ é~ L[p—p.(L,¢)]"? in
accordance with scaling theory. Let us introduce the scaling
variable

r=L[p-pL.q)]"?. 9)

If we plot the negative logarithm of the crossing probability
—In(7,,) as a function of the scaling variable 7 then we ex-
pect power dependence in the vicinity of zero and linear
dependence for the tails. We can use the scaling variable 7
=L[p-p(L,q)]"'? to fit the crossing probability taking into
account the finite size scaling. Let us describe our fitting
procedure.

We may assume that we obtain the position of the critical
point on the finite lattice p.(L,q) as a result of the previous
fit. Thus, we can use only three free fitting parameters and fix
the value p.(L,q). Substituting Eq. (9) for 7in Egs. (3) and
(5), we obtain the fitting formulas for the body and the tails
of the crossing probability:

- ln(ﬂ-hs) = fB(T;qu) == a(L’CI) + b(L,C]) TX(L’q)s (10)

—In(m,y) = fu(7;L,q) =—d(L,q) + c(L,q)7.  (11)

Here m=L[p-p.(L.q)]"? and a.d,c.x are fitting parameters.

The numerical value of the variable p.(L,q) is used for
computation of 7 in accordance with Eq. (9). Comparing the
fitting procedures Egs. (10) and (11) and the previous fitting
procedures Egs. (3) and (5) we can obtain relations between
the fitting parameters b(L,q), x(L,q), ¢(L,q) and the param-
eters b"(L,q), {(L,q), C(L,q):

b(L,q) =b"(L,q)", (12)
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TABLE IV. The slopes of lines, results of the approximation for y(L,q); the analytical values v(g) are

presented for comparison.

L q= 1 q:2 q= 3 q=4
4/3=1.3333 1 5/6=0.83333 2/3=0.6666
32 1.366(11) 1.026(23) 0.87(2) 0.761(21)
48 1.375(10) 1.030(12) 0.868(12) 0.772(14)
64 1.376(12) 1.035(8) 0.877(8) 0.767(10)
80 1.32(3) 1.032(10) 0.872(13) 0.752(14)
128 1.31(4) 1.036(5) 0.874(6) 0.759(4)
UL,q) =x(L,q)v(L,q), (13)  numerical inaccuracy; thus it is possible that d(¢g=1)=0. All
dependence on L is enclosed in the expression for 7. Hence
C(L.q) = c(L,q)L, &L.q) =In[C(L,q)]. (14) we can omit the variable L in the parentheses and consider

The special case is g=4. As we can observe from the results
of the approximations in Tables I and IV the finite size scal-
ing of the crossing probability for g=4 does not obey the
scaling law L(p—p,)"¢=* (probably due to logarithmic cor-
rections to scaling). Therefore, instead of the analytical value
v(q=4)=2/3 we use the numerical approximation y(g=4)
=3/4 from Table IV. We will see later that this substitution
allows us to obtain correct results for the scaling.

We perform the fitting procedure in accordance with the
formulas proposed above. For the fit of the body of the cross-
ing probability Eq. (10) the scaling region 1.6<<-In(,)
<6 was used. For the fit of the tails of the crossing probabil-
ity Eq. (11) we use the scaling region 6 <-In(,,) <12.

We place the results of the fitting procedure for g=1, 2, 3,
and 4 in Figs. 6(a)-6(d), respectively. In these figures the
fitting region is denoted by horizontal lines. As we expect, if
we plot the data as functions of the scaling variable 7 then
the finite size dependence is eliminated and the points for
different values of L lie on the same curves. The results of
the approximation for b(L,q), c(L,q), and d(L,q) demon-
strate that these fitting parameters do not depend on the lat-
tice size L. The absolute value of the parameter d(q) is rela-
tively small so the prefactor D(g) is about 1. For percolation
the order of d(g=1) is less than three times the value of the

6.6
6.4
6.2

5
58
56
54
521

5t

48 — :
34 36 38 4 42 44 46 48 5

In(L)

In[C(L,g)]

¢ a=Dmc
. v
o’y g=2pve
¢, 1{a=3rH
" g=rc

FIG. 5. The fitting parameter ¢(L,q)=In[C(L,q)] (the vertical
shift of the approximation lines for tails) as a function of In(L) for
q=1,2, 3, 4. Results of approximation cT(q)+c;(q)ln(L) are shown
by lines.

b(g) only as a function of g. This fact validates the choice of
the fitting procedure.

The data in Table V presents some power x(g). This
power describes the behavior of the crossing probability in
the vicinity of the critical point as a function of the scaling
variable 7 and does not depend on the lattice size.

VI. DISCUSSION

Using the dual lattice (see Fig. 1) allows us to avoid a
finite size shift of the critical point for the bond percolation
and to diminish it for spin models. The accuracy of definition
of the critical point on the finite lattice plays a principal role
for the investigation of the tail scaling. The high quality of
our approximation is proved by the remarkable symmetry of
the crossing probability with respect to the critical point p,.
In Figs. 4 and 6 we can observe that the two branches p
—p.>0 and p-p.<O0 practically coincide.

Let us discuss the meaning of the two scaling regions of
the crossing probability. In Fig. 7(a) we plot the crossing
probability by crosses (bottom) and the magnetic susceptibil-
ity x by triangles (top) for the Ising model (¢g=2) on the
lattice L=128 as functions of the inverse temperature 3 with
a logarithmic scale for the ordinate axis.

In Fig. 7(b) we plot (by crosses) the same data for the
crossing probability as a function of the absolute value of the
scaling variable 7=L(p-p.)” where p=1-exp(-8). In Fig.
7(b) the position of the crossover region of the crossing
probability is indicated by solid horizontal line. In Fig. 7(a)
we also indicate the position of the crossover region of
by horizontal solid line on the same level as well as in Fig.
7(b). For the magnetic susceptibility we mark by horizontal
dashed lines the region with critical behavior

X(ﬁ) -~ [(B - Bc)/ﬂc]_ya (15)

where 7 is the critical index of the magnetic susceptibility.
We see from Fig. 7(a) that the tails of the crossing probabil-
ity directly correspond to the critical region of the magnetic
susceptibility. In this critical region the correlation length ¢ is
smaller than the sample size £<L. As the temperature ap-
proaches the critical point, the correlation length reaches the
sample size. At that point the magnetic susceptibility on the
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FIG. 6. The negative logarithm of the crossing probability
—In[7,(p;L,q)] as a function of the scaling variable 7=L[p
—pL,q)]"? for (a) percolation g=1; (b) Ising model g=2; (c)
Potts model ¢g=3; (d) Potts model g=4. Results of the approxima-
tion of the body of the crossing probability by the function
f3(mL,q)=—a(L,q)+b(L,q) 7" and tails of the crossing probability
by the function f4(7;L,q)=—d(L,q)+c(L,q)7 are added. The
ranges of the approximation regions are shown by horizontal lines.

finite lattice deviates from the critical behavior Eq. (15) and
becomes smooth—see the region over the top dashed hori-
zontal line in Fig. 7(a). At the same point the crossing prob-
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TABLE V. Results of the approximation for the fitting parameter
x(L,q).

L q=1 q=2 q=3 q=4

32 1.432(3) 1.61(2) 1.75(3) 1.82(3)
48 1.426(4) 1.59(2) 1.77(3) 1.78(3)
64 1.413(5) 1.59(2) 1.76(4) 1.78(4)
80 1.432(4) 1.60(3) 1.73(4) 1.73(3)
128 1.432(6) 1.61(3) 1.74(4) 1.81(5)

ability crosses over from tails to body—the region over the
solid horizontal line in Fig. 7(a) [and the region under the
horizontal line in Fig. 7(b)]. At the critical point 8,=—In(1
—-p.)=0.881373... both the magnetic susceptibility and the
crossing probability reach a maximum. We can see from Fig.
7(b) that the function ,,(7) consists of two parts: the body
|7 <7, and the tails |7]> 7,. The negative logarithm of the
body of the crossing probability as a function of 7 is well
described by the function —In[A(q)]+b(g)|7"? [the solid
line on Fig. 7(b)]. The negative logarithm of the tails of the
crossing probability have shape -In[D(q)]+c(g)7 [the
dashed line in Fig. 7(b)]. This line is tangent to the body at
the point 7y(g); namely, this point is marked by the horizon-
tal line. The two different scaling regions of the crossing
probability clearly seen in Fig. 7(b) can explain the long time
uncertainty about its shape. In Ref. [20] the scaling index for

XE e
Tygl By e
10000 critical region of (B} -~ 1
crossover region of g Dexp(-cTy)
—~ 100 & it
e M Y
\Sé 1F A.MM
a s
Tz ool
B
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* %
1e-06 g‘ *
(a) 0.75 0.8 0.85 0.9 0.95 1
14 T T T T g T
12 i
10
>
Z 8t
R
~—
S 6
1
4 Toe(T),q=2, L=128, num. data =—--—-
v In(Ay+bizl*
-In(D)+ ¢|t| ==mememeeey]
2 In(D)+elty|

(B) 00 g nis 2 25 o 85 i s
Il

FIG. 7. (a) The magnetic susceptibility x(B) and the crossing

probability ,,(8) as functions of the inverse temperature 3 for the

Ising model, L=128. (b) The negative value of the logarithm of the

crossing probability —In(r,,) for the Ising model as a function of

the absolute value of the scaling variable 7=L(p—p,)" on the lattice
L=128.
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the percolation threshold for the two-dimensional percolation
model was found to be {=1.9(1). This result coincides with
our approximation of the body of the crossing probability for
percolation, (=1.864(12). In more recent work
[11,17,18,21,22] the tail region for percolation was investi-
gated, which is described by the scaling formula D(gq)exp
[-c(q)L(p-p.)=*3]. The crossover form to Gaussian-like
behavior to slope 4/3 is observed in figures of Ref. [23]. Tt
seems, near the critical point, that the behavior of the cross-
ing probability is parabolic. The rounding happens in the
interval 7<<0.1. This interval is relatively small in compari-
son with regions of the body 0.1<|A<1.5 and tails 1.5
<|71<4 as can be seen in Figs. 6 and 7(b).

We have five fitting parameters a(q), b(q), x(g), c(g), and
d(g) in expressions (10) and (11). In Figs. 6(a)-6(d) we see
the crossover region between the body and the tails of the
crossing probability. In this region the function f3 touches the
line f4. This means that at some point 7y(g) the values of the
functions are equal; therefore

- a(L.q) + b(g)[7(q)]"? = = d(L,q) + c(q) 7o(q), (16)
and the first derivatives of these functions are equal too,
x(@)b(@)[ ()] = c(q). (17)
Substituting ¢(g) from Eq. (17) in Eq. (16) we obtain the
expression for b(g),
d(q) —alq)
[x(q) = 1L 7o(q) "

If the crossing probabilities at the critical points A(g) [and
logarithms a(g)] can be calculated analytically by conformal

b(q) = (18)

PHYSICAL REVIEW E 72, 036115 (2005)

field methods (at least for the percolation it is possible) [3-5]
then only four independent parameters b(g), 7(g) and x(q),
a(g) remain for the crossing probability. In such a way we
propose the approximation formula for the crossing probabil-
ity .. The crossing probability as a function of the variable
7=L(p—p,)? consists of two parts:

o, )z{Aw)exp[—b(q)f(@], 7= (a).
P Digexpl- @), > m(a),

where the parameters are connected by Egs. (17) and (18).
The main statements for the crossing probability 7, are as
follows.

(1) In accordance with scaling theory the finite size scal-
ing of the crossing probabilities may be eliminated by intro-
ducing the scaling variable 7=L[p—p.(L,q)]"?. The cross-
ing probability as a function of 7 does not depend on the
lattice size L.

(2) The body of the crossing probability scales as
(1) = A(g)exp[-b(q) 7).

(3) The tails of the crossing probabilities scale as 7,,(7)
=D(q)exp[—c(q)].

(4) The finite size scaling for g=4 is not described by the
analytical value of the correlation length index wv(g=4)
=2/3. We obtain a scaling index y(g=4)=0.759(4) for the
tails of the crossing probability (see Table IV) or 1/u(q)
=().728 for the body of the crossing probability (see Table I).

(19)
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